World Industrial Reporter

Innovation Delivered Daily

  • Innovation
    • Innovation Article Archive
    • Innovative Companies
    • Innovation Strategies
    • New Equipment Innovations
  • New Products
  • Additive Manufacturing
  • Markets
    • Market Trends
    • Tradeshow Reports
    • White Papers
  • Logistics
  • Newsletters
World Industrial Reporter » Innovation » Microwaves Boost Computers’ Object Identification Skills

Microwaves Boost Computers’ Object Identification Skills

January 10, 2020

wavepattern small

A team of American and French scientists have developed a new machine-learning approach that lets computers identify objects with the help of microwaves.

According to the Duke University and Institut de Physique de Nice team, identifying objects with microwaves improve accuracy while reducing the associated computing time and power requirements.

It also provides a boost to object identification and speed in fields where both are critical, such as autonomous vehicles, security screening and motion sensing.

In a proof-of-principle study, the setup correctly identified a set of 3D numbers using tens of measurements instead of the hundreds or thousands typically required.

“Object identification schemes typically take measurements and go to all this trouble to make an image for people to look at and appreciate,” says Duke assistant professor Roarke Horstmeyer.

“But that’s inefficient because the computer doesn’t need to ‘look’ at an image at all.”

“This approach circumvents that step and allows the program to capture details that an image-forming process might miss while ignoring other details of the scene that it doesn’t need,” adds Aaron Diebold, a research assistant in distinguished professor David R. Smith’s lab.

“We’re basically trying to see the object directly from the eyes of the machine.”

In the study, the researchers used a metamaterial antenna that can sculpt a microwave wave front into many different shapes.

The metamaterial is an 8×8 grid of squares, each of which contains electronic structures that allow it to be dynamically tuned to either block or transmit microwaves.

For each measurement, the intelligent sensor selects a handful of squares to let microwaves pass through. This creates a unique microwave pattern, which bounces off the object to be recognized and returns to another similar metamaterial antenna.

The sensing antenna also uses a pattern of active squares to add further options to shape the reflected waves. The computer then analyzes the incoming signal and attempts to identify the object.

By repeating this process thousands of times for different variations, the machine learning algorithm eventually discovers which pieces of information are the most important as well as which settings on both the sending and receiving antennas are the best at gathering them.

Image and content: Duke University

Share on

Filed Under: Innovation

AISkin: Scientists Create Human Skin-Like Sensor for Soft Robotics
Hyundai, Uber Reveal Full-Scale Air Taxi Model at CES 2020
Avatar

About Aruna Urs

Aruna is an industrial journalist. He writes on innovations that emanate at the intersection of science and engineering having a profound impact on the manufacturing sector.

Follow me
Suppliers

High Accuracy, Non-Contact, Absolute Linear Sensor

Santest Model GY series are high accuracy, non-contact, absolute type linear sensors employing magnetostrictive, Wiedemann effect. An ultra-sonic wave generated by a moving magnet near a magnetostrictive wave-guide on which the sonic wave propagates to the head of the transducer.
View Supplier Email this Supplier

Super High Response Speed Servo Valve

With “Dual Halbach Magnet Array” configuration, which makes the strongest magnetic field more than twice as much as the conventional model. Santest Direct Acting Servo Valve has achieved world-class highest frequency response speed of 800Hz. DA Series also has excellent contamination resistance. Find out more about how this patented servo valve works.
View Supplier Email this Supplier

Precision Micrometer for Large Measuring Ranges

The optoCONTROL 2520-95 precision micrometer is designed for static and dynamic measurement tasks with a large measuring range. It detects geometrical parameters such as diameter, gap, height and position and combines high linearity with high measurement speed.
View Supplier Email this Supplier

Beckhoff will be there: new highlights at the SPS Connect from November 24!

Beckhoff is accompanying the SPS Connect with new technology highlights, AI-based dialog formats, exciting round tables and inspiring presentations. Prebook now and secure free tickets!
View Supplier Email this Supplier

Automatic Spot Finder IR Camera with 80×80 Pixels

An all-rounder imager for numerous industrial applications: From metal processing to plastics, in fire prevention tasks as well as in the automotive sector. The spot finder function allows accurate temperature measurements of moving objects.
View Supplier Email this Supplier

Subscribe

Get the latest WIR reports straight to your inbox.

Free Newsletter Subscription

Find us on the social web.

  • About Us
  • Contact Us
  • Advertise
  • Terms Of Use
  • Privacy Policy
FREE NEWSLETTER SUBSCRIPTION

Get the latest WIR reports straight to your inbox.

  • Innovation Article Archive
  • Innovation Strategies
  • Innovative Companies
  • New Products
  • Additive Manufacturing
  • Market Trends
  • Tradeshow Reports
  • White Papers
  • Logistics
  • Newsletters
  • Fun Stuff
  • Industry Links
Follow us

© 2021 Thomas Publishing Company. All rights reserved.

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site you agree.OkRead more