World Industrial Reporter

Innovation Delivered Daily

  • Innovation
    • Innovation Article Archive
    • Innovative Companies
    • Innovation Strategies
    • New Equipment Innovations
  • New Products
  • Additive Manufacturing
  • Markets
    • Market Trends
    • Tradeshow Reports
    • White Papers
  • Logistics
  • Newsletters
World Industrial Reporter » Innovation » Ionic Liquids could Pave Way for Better Rare-Earth Materials Processing

Ionic Liquids could Pave Way for Better Rare-Earth Materials Processing

December 29, 2014

photo_Anya01

The U.S. Department of Energy’s Ames Laboratory and Critical Materials Institute materials chemist Anja Mudring is harnessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials.

“Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge amount of options,” says Mudring. “That means we can really engineer ionic liquids with specific functions in mind.”

One such function is improving the rare-earth separation process, either for extracting rare earths from ore or recycling rare earths from discarded magnets.

“We are tuning the ionic liquids in such a way that they dissolve rare-earth oxides and then we’re using electrodeposition, where electricity is run through a liquid to create a chemical change to get the rare earth in metal form,” says Mudring, who is also a professor of materials science and engineering at Iowa State University.

Traditionally, electrodeposition processes are extremely high temperature and often require corrosive chemicals. But Mudring’s process requires much lower temperatures and ionic liquids are less hazardous, so less energy is needed and the process is safer and greener.

Mudring’s group is also using ionic liquids to create phosphors for compact fluorescent light bulbs.

“We’re using ionic liquids, putting them in a microwave, energizing them, and creating a phosphors material. The phosphors particles are less than 10 nanometers, which means they do not scatter light, key for optical applications like for compact fluorescent light bulbs,” says Mudring.

Better yet, Mudring’s process also reduces the amount of rare-earth materials required in the process, and may someday make it possible to replace mercury vapor with less-hazardous noble gases in CFLs. And looking farther down the road, the new phosphors could also be used in LEDs as they continue to replace CFLs.

“Ionic liquids are the key to the improvements in this material synthesis,” says Mudring. “They function as the solvent, a safer one than an alcohol or other combustible solvent. And they are also the reaction partner: Here, the ionic liquid is the fluoride source, so we can omit hazardous hydrofluoric acid from the process. Again, that makes the process safer and cleaner. And they even function to stabilize the nanoparticles created in the process, eliminating the need for an additional stabilizer. Three functions in one! Add to that how efficiently ionic liquids take up microwave energy and there’s just huge potential there for improving materials synthesis.”

The Critical Materials Institute is a Department of Energy Innovation Hub led by the U.S. Department of Energy’s Ames Laboratory. CMI seeks ways to eliminate and reduce reliance on rare-earth metals and other materials critical to the success of clean energy technologies.

Image courtesy and content by Ames Lab

Share on

Filed Under: Innovation

Scientists Create Micro-Patterned Superhydrophobic Surfaces for Harvesting Fog
Best of 2014: The Year as It was
Read Original Article
Avatar

About Doug Lee

Doug has over 30 years tracking and reporting on new products and services introduced by industrial companies from around the world.

Follow me
Suppliers

TwinCAT Controller Redundancy: Controller Redundancy with Standard Hardware Components

Plant availability plays a crucial role in the process industry in particular, so building redundancy into automation technology designs is vital. This is why Beckhoff expanded its extensive range of solutions in this area to also include a software solution for redundant control operation: TwinCAT Controller Redundancy.
View Supplier Email this Supplier

High Accuracy, Non-Contact, Absolute Linear Sensor

Santest Model GY series are high accuracy, non-contact, absolute type linear sensors employing magnetostrictive, Wiedemann effect. An ultra-sonic wave generated by a moving magnet near a magnetostrictive wave-guide on which the sonic wave propagates to the head of the transducer.
View Supplier Email this Supplier

Super High Response Speed Servo Valve

With “Dual Halbach Magnet Array” configuration, which makes the strongest magnetic field more than twice as much as the conventional model. Santest Direct Acting Servo Valve has achieved world-class highest frequency response speed of 800Hz. DA Series also has excellent contamination resistance. Find out more about how this patented servo valve works.
View Supplier Email this Supplier

Better for Business and the Environment

Maximize efficiency, lower energy costs, and participate in demand response and energy market programs for added monetization with new distributed energy management technology, as part of Caterpillar’s new Energy as a Service (EaaS) capabilities. Automatically dispatch onsite assets for power generation and storage during peak demand times.
View Supplier Email this Supplier

Large Pumping of Condensable Gases with New Multi-Stage Roots Pumps

The pumps are designed for oil- and particle free applications in the pressure range between atmosphere up to 3x10-2 hPa. With their built-in intelligence it allows high pumping speed at high pressure. The pumps from Pfeiffer Vacuum meet the requirements where clean and dry vacuum is needed like drying, sterilization, coating as well as semiconductor and R&D applications.
View Supplier Email this Supplier

Subscribe

Get the latest WIR reports straight to your inbox.

Free Newsletter Subscription

Find us on the social web.

  • About Us
  • Contact Us
  • Advertise
  • Terms Of Use
  • Privacy Policy
FREE NEWSLETTER SUBSCRIPTION

Get the latest WIR reports straight to your inbox.

  • Innovation Article Archive
  • Innovation Strategies
  • Innovative Companies
  • New Products
  • Additive Manufacturing
  • Market Trends
  • Tradeshow Reports
  • White Papers
  • Logistics
  • Newsletters
  • Fun Stuff
  • Industry Links
Follow us

© 2023 Thomas Publishing Company. All rights reserved.